Groundwork for playing with the architecture of plants | Digital Science
Programming stem cells
Both systems are extremely flexible: one constantly reacts to the quantity of the plant hormone auxin, which is always in flux, while the other responds to the changing movement of a protein. “The plant programs the stem cells exactly where the two systems come together, such as in the root tips, in recently developed lateral roots and during the regeneration (recovery) of damaged roots,” says Scheres. “This knowledge will ultimately help us adapt the architecture of the plant, generating a variety of new applications for agriculture and horticulture.”
Stem cells in the root tips
The agricultural sector is constantly looking for ways to develop crops with a higher yield and production. “Good insight into the growth and development of the plant is essential in this respect,” Scheres continues. “When you cut off a root tip, you can actually see the stem cells under the microscope. The new research enables us to understand how new stem cells are programmed. This knowledge can also help accurately steer the regeneration (recovery) of plants from proliferating cells – an important process in horticulture – via the genes.”
The next step for the research team is to actually adapt the architecture of a crop. “We already have a few ideas about this, although I cannot reveal concrete examples at this point. In the future we may be able to predict from the drawing board: ‘this is how to make more and thicker roots’ or ‘this allows us to align all the leaves’.”
Explore further:
Study sheds light on stem cell proliferation that may one day boost crop yields
More information:
Akie Shimotohno et al. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules, (2018). DOI: 10.1101/gad.314096.118